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Overview
 Purpose: Validate assumptions in CFD calculations for spent fuel cask thermal design analyses

 Used to determine steady-state cladding temperatures in dry casks
 Needed to evaluate cladding integrity throughout storage cycle

 Measure temperature profiles for a wide range of decay power and helium cask pressures
 Mimic conditions for above and  below ground configurations of vertical, dry cask systems with canisters
 Simplified geometry with well-controlled boundary conditions
 Provide indirect measure of mass flow rates and convection heat transfer coefficients

 Use existing prototypic BWR Incoloy-clad test assembly 2
Underground Storage

Source: ww.holtecinternational.com/productsandservices/wasteandfuelmanagement/hi-storm/

Aboveground Storage
Source: www.nrc.gov/reading-rm/doc-collections/fact-sheets/storage-spent-fuel-fs.html
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Project Structure
 Boiling Water Reactor Dry Cask Simulator (DCS)
 Partnership between USNRC and DOE

 Equal cost sharing
 Parallel reporting to PICS:NE and Monthly Letter Status Reports (MLSRs) to NRC
 NRC staff has technical review lead

 Mutual benefits
 Thermal-hydraulic data for validation exercises
 Complimentary data for High-Burnup Cask Demonstration Project

 Includes thermal lance comparisons to peak cladding temperature (PCT)
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Past Validation Efforts 
Full Scale

 Full scale, unconsolidated
 Castor-V/21 cast iron/graphite with polyethylene rod shielding

 1986: EPRI NP-4887, PNL-5917
 21 PWRs
 95 Thermocouples (TC’s) total
 Unventilated 
 Sub-atmospheric (air and He) and vacuum

 REA 2023 prototype steel-lead-steel cask with glycol water shield
 1986: PNL-5777 Vol. 1
 52 BWRs
 70 TC’s total
 Unventilated
 Sub-atmospheric (air & He) and vacuum

 Full scale, consolidated
 VSC-17 ventilated concrete cask

 1992: EPRI TR-100305, PNL-7839
 17 consolidated PWRs
 98 Thermocouples (TC’s) total
 Ventilated 
 Sub-atmospheric (air and He) and vacuum 4

Past Validation Efforts (cont.) 
Unconsolidated Fuel
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 Small scale, single assembly
 FTT (irradiated, vertical) and SAHTT (electric, vertical & horizontal)

 1986 PNL-5571
 Single 15x15 PWR    
 Thermocouples (TC’s)

– FTT:  187 TC’s total
– SAHTT:  98 TC’s total

 BC:  Controlled cask outer wall temperature
 Atmospheric (air & He) and vacuum

 Mitsubishi  test assembly (electric, vertical & horizontal)
 1986 IAEA-SM-286/139P
 Single 15x15 PWR 
 92 TC’s total, all distributed over 4 levels inside tube bundle
 BC:  Controlled outer wall temperature of fuel tube
 Atmospheric (air & He) and vacuum

 Not appropriate for elevated helium pressures or belowground configurations

Current Approach
 Focus on pressurized canister systems

 BCS capable of 24 bar internal pressure @ 400 ◦C
 Current commercial designs up to ~8 bar

 Ventilated designs
 Aboveground configuration
 Belowground configuration

 With crosswind conditions
 Thermocouple (TC) attachment allows better peak cladding temperature measurement

 0.030” diameter sheath
 Tip in direct contact with cladding 

 Provide validation quality data for CFD
 Complimentary to Cask Demo Project
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BCS Pressure Vessel Hardware
 Fabricated and pressure tested
 Coated with ultra high temperature paint
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Prototypic Hardware
 Most common 99 BWR in US
 Prototypic 99 BWR hardware

 Full length, prototypic 99 BWR components
 Electric heater rods with Incoloycladding
 74 fuel rods

 8 of these are partial length
 Partial length rods end 2/3  the length up assembly

 2 water rods
 7 spacers
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Nose piece anddebris catcher BWR channel, water tubesand spacers

Upper tie plate

Internal Thermocouple Layout
 97 total TC’s internal to assembly
 25 TC’s mounted to channel box
 28 TC’s mounted to basket
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Radial Array24” spacing11 TC’s each level66 TC’s total (details below)
Axial array A16” spacing20 TCs
Axial array A212” spacing – 7 TC’sWater rods inlet and exit – 4 TC’sTotal of 97 TCs
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CYBL Test Facility
 Large stainless steel containment

 Repurposed from earlier CYLINDRICAL BOILING Testing sponsored by DOE
 Excellent general-use engineered barrier for isolation of high-energy tests

 3/8 in. stainless steel
 17 ft diam. by 28 ft cylindrical workspace

 Part of the Nuclear Energy Work Complex (NEWC)
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Aboveground Configuration
 BWR Cask Simulator (BCS) system capabilities

 Power: 0 – 2.5 kW (anticipated)
 Pressure vessel

 Vessel temperatures up to 400 C
 Pressures up to 24 bar
 ~200 thermocouples throughout system (internal and external)

 Air velocity measurements at inlets
 Calculate external mass flow rate
 Estimate external convection coefficient
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Pressure 
Boundary

Belowground Configuration
 Modification to aboveground ventilation configuration

 Additional annular flow path
 Final design complete

 Inlet and outlet based on prototypic configuration
 Reviewed by NRC staff

 Scaling analysis completed
 Favorable comparisons

 Modified, channel Rayleigh number (RaS*)
 Reynolds (Re) number
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CFD Transient
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 Aboveground configuration at 500 W
 Axisymmetric with fuel represented as porous media
 Internal laminar flow
 External Low-Re k-ε

 Peak cladding temp. (PCT) and peak vessel temp. (PVT)
 100 and 700 kPa

 Increased helium pressure increased internal convection
 Decreased internal thermal gradient

CFD Summary
Parameter DCSLow Power DCSHigh Power Cask
Power (W) 500 5,000 36,900
ṁAir (kg/s) 0.039 0.083 0.350
ṁHe (kg/s) 1.3E-3 1.8E-3 2.1E-2
PCT (K) 364 647 663
PVT (K) 337 495 531
TAir, out (K) 306 332 371
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Aboveground

Parameter DCSLow Power DCSHigh Power Cask
Power (W) 500 5,000 36,900
ṁAir (kg/s) 0.038 0.083 0.452
ṁHe (kg/s) 1.3E-3 1.7E-3 2.2E-2
PCT (K) 365 653 646
PVT (K) 333 475 518
TAir, out (K) 309 349 350

Belowground

 All results for 700 kPa
 PCT, PVT, and TAir, out compare best with Cask at DCS power of 5,000 W
 Dimensional analysis shows similarity for relevant dimensionless groups

Internal Dimensional Analyses
 Internal flow and convection near prototypic

 Prototypic geometry for fuel and basket
 Downcomer scaling insensitive to wide range of decay heats

 External cooling flows matched using elevated decay heat
 Downcomer dimensionless groups
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Parameter
AbovegroundDCSLow Power DCSHigh Power Cask

Power 500 5,000 36,900
ReDown 170 190 250
RaH* 3.1E+11 5.9E+11 4.6E+11
NuH 200 230 200

Downcomer
“Canister”ChannelBox

“Basket”
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External Dimensional Analyses
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Parameter
Aboveground

DCSLow Power DCSHigh Power Cask
Power 500 5,000 36,900
ReEx 3,700 7,100 5,700
RaDH* 2.7E+08 2.7E+09 2.3E+08
(DH, Cooling / HPV) × RaDH* 1.1E+07 1.1E+08 4.8E+06
NuDH 16 26 14

 External cooling flows evaluated against prototypic
 External dimensionless groups

External
cooling
flow path

Summary
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 Dry cask simulator capable of wide range of helium fill pressures and decay heats in final construction
 Mimic aboveground and belowground configurations
 Provide validation-quality data for CFD modeling

 Pre-test predictions show favorable scaling with prototypic cask designs
 PCT, PVT, and exit air temps. closely reproduced
 Suitable matching of dimensionless groups demonstrated


